Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cells ; 11(13)2022 06 21.
Article in English | MEDLINE | ID: covidwho-1963752

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is the second rate-limiting enzyme of the pentose phosphate pathway. This enzyme is present in the cytoplasm of all mammalian cells, and its activity is essential for an adequate functioning of the antioxidant system and for the response of innate immunity. It is responsible for the production of nicotinamide adenine dinucleotide phosphate (NADPH), the first redox equivalent, in the pentose phosphate pathway. Viral infections such as SARS-CoV-2 may induce the Warburg effect with an increase in anaerobic glycolysis and production of lactate. This condition ensures the success of viral replication and production of the virion. Therefore, the activity of G6PD may be increased in COVID-19 patients raising the level of the NADPH, which is needed for the enzymatic and non-enzymatic antioxidant systems that counteract the oxidative stress caused by the cytokine storm. G6PD deficiency affects approximately 350-400 million people worldwide; therefore, it is one of the most prevalent diseases related to enzymatic deficiency worldwide. In G6PD-deficient patients exposed to SARS-CoV-2, the amount of NADPH is reduced, increasing the susceptibility for viral infection. There is loss of the redox homeostasis in them, resulting in severe pneumonia and fatal outcomes.


Subject(s)
COVID-19 , Glucosephosphate Dehydrogenase , Animals , Antioxidants , Glucosephosphate Dehydrogenase/metabolism , Humans , Mammals/metabolism , NADP/metabolism , SARS-CoV-2
2.
Cells ; 11(13):1982, 2022.
Article in English | MDPI | ID: covidwho-1894167

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is the second rate-limiting enzyme of the pentose phosphate pathway. This enzyme is present in the cytoplasm of all mammalian cells, and its activity is essential for an adequate functioning of the antioxidant system and for the response of innate immunity. It is responsible for the production of nicotinamide adenine dinucleotide phosphate (NADPH), the first redox equivalent, in the pentose phosphate pathway. Viral infections such as SARS-CoV-2 may induce the Warburg effect with an increase in anaerobic glycolysis and production of lactate. This condition ensures the success of viral replication and production of the virion. Therefore, the activity of G6PD may be increased in COVID-19 patients raising the level of the NADPH, which is needed for the enzymatic and non-enzymatic antioxidant systems that counteract the oxidative stress caused by the cytokine storm. G6PD deficiency affects approximately 350–400 million people worldwide;therefore, it is one of the most prevalent diseases related to enzymatic deficiency worldwide. In G6PD-deficient patients exposed to SARS-CoV-2, the amount of NADPH is reduced, increasing the susceptibility for viral infection. There is loss of the redox homeostasis in them, resulting in severe pneumonia and fatal outcomes.

3.
Histol Histopathol ; 36(9): 947-965, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1513241

ABSTRACT

Infection by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to multi-organ failure associated with a cytokine storm and septic shock. The virus evades the mitochondrial production of interferons through its N protein and, from that moment on, it hijacks the functions of these organelles. The aim of this study was to show how the virus kidnaps the mitochondrial machinery for its benefit and survival, leading to alterations of serum parameters and to nitrosative stress (NSS). In a prospective cohort of 15 postmortem patients who died from COVID-19, six markers of mitochondrial function (COX II, COX IV, MnSOD, nitrotyrosine, Bcl-2 and caspase-9) were analyzed by the immune colloidal gold technique in samples from the lung, heart, and liver. Biometric laboratory results from these patients showed alterations in hemoglobin, platelets, creatinine, urea nitrogen, glucose, C-reactive protein, albumin, D-dimer, ferritin, fibrinogen, Ca²âº, K⁺, lactate and troponin. These changes were associated with alterations in the mitochondrial structure and function. The multi-organ dysfunction present in COVID-19 patients may be caused, in part, by damage to the mitochondria that results in an inflammatory state that contributes to NSS, which activates the sepsis cascade and results in increased mortality in COVID-19 patients.


Subject(s)
COVID-19/pathology , Mitochondria/pathology , Nitrosative Stress/physiology , Aged , Female , Humans , Male , Middle Aged , SARS-CoV-2
4.
Front Physiol ; 12: 667024, 2021.
Article in English | MEDLINE | ID: covidwho-1247901

ABSTRACT

The kidnapping of the lipid metabolism of the host's cells by severe acute respiratory syndrome (SARS-CoV-2) allows the virus to transform the cells into optimal machines for its assembly and replication. Here we evaluated changes in the fatty acid (FA) profile and the participation of the activity of the desaturases, in plasma of patients with severe pneumonia by SARS-CoV-2. We found that SARS-CoV-2 alters the FA metabolism in the cells of the host. Changes are characterized by variations in the desaturases that lead to a decrease in total fatty acid (TFA), phospholipids (PL) and non-esterified fatty acids (NEFAs). These alterations include a decrease in palmitic and stearic acids (p ≤ 0.009) which could be used for the formation of the viral membranes and for the reparation of the host's own membrane. There is also an increase in oleic acid (OA; p = 0.001) which could modulate the inflammatory process, the cytokine release, apoptosis, necrosis, oxidative stress (OS). An increase in linoleic acid (LA) in TFA (p = 0.03) and a decreased in PL (p = 0.001) was also present. They result from damage of the internal mitochondrial membrane. The arachidonic acid (AA) percentage was elevated (p = 0.02) in the TFA and this can be participated in the inflammatory process. EPA was decreased (p = 0.001) and this may decrease of pro-resolving mediators with increase in the inflammatory process. The total of NEFAs (p = 0.03), PL (p = 0.001), cholesterol, HDL and LDL were decreased, and triglycerides were increased in plasma of the COVID-19 patients. Therefore, SARS-CoV-2 alters the FA metabolism, the changes are characterized by alterations in the desaturases that lead to variations in the TFA, PL, and NEFAs profiles. These changes may favor the replication of the virus but, at the same time, they are part of the defense system provided by the host cell metabolism in its eagerness to repair damage caused by the virus to cell membranes.

5.
Clin J Am Soc Nephrol ; 16(5): 685-693, 2021 05 08.
Article in English | MEDLINE | ID: covidwho-1242270

ABSTRACT

BACKGROUND AND OBJECTIVES: AKI in coronavirus disease 2019 (COVID-19) is associated with higher morbidity and mortality. The objective of this study was to identify the kidney histopathologic characteristics of deceased patients with diagnosis of COVID-19 and evaluate the association between biopsy findings and clinical variables, including AKI severity. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Our multicenter, observational study of deceased patients with COVID-19 in three third-level centers in Mexico City evaluated postmortem kidney biopsy by light and electron microscopy analysis in all cases. Descriptive and association statistics were performed between the clinical and histologic variables. RESULTS: A total of 85 patients were included. Median age was 57 (49-66) years, 69% were men, body mass index was 29 (26-35) kg/m2, 51% had history of diabetes, 46% had history of hypertension, 98% received anticoagulation, 66% were on steroids, and 35% received at least one potential nephrotoxic medication. Severe AKI was present in 54% of patients. Biopsy findings included FSGS in 29%, diabetic nephropathy in 27%, and arteriosclerosis in 81%. Acute tubular injury grades 2-3 were observed in 49%. Histopathologic characteristics were not associated with severe AKI; however, pigment casts on the biopsy were associated with significantly lower probability of kidney function recovery (odds ratio, 0.07; 95% confidence interval, 0.01 to 0.77). The use of aminoglycosides/colistin, levels of C-reactive protein and serum albumin, previous use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers, antivirals, nonsteroid anti-inflammatory drugs, and anticoagulants were associated with specific histopathologic findings. CONCLUSIONS: A high prevalence of chronic comorbidities was found on kidney biopsies. Nonrecovery from severe AKI was associated with the presence of pigmented casts. Inflammatory markers and medications were associated with specific histopathologic findings in patients dying from COVID-19.


Subject(s)
Acute Kidney Injury/pathology , COVID-19/pathology , Kidney/pathology , SARS-CoV-2 , Aged , Biopsy , Female , Humans , Kidney/ultrastructure , Male , Middle Aged
6.
JACC Case Rep ; 2(12): 2021-2023, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-882594

ABSTRACT

We present the case of a patient with myocardial infarction and COVID-19 disease who developed hemorrhagic pericardial effusion and cardiac tamponade. The differential diagnosis included post-infarction pericarditis and mechanical complications, thrombolysis, Dressler syndrome, and viral pericarditis. The histopathologic examination of the pericardial tissue sample and electron microscopic examination established the diagnosis. (Level of Difficulty: Advanced.).

7.
Medicina (Kaunas) ; 56(8)2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-693481

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes the corona virus disease-19 which is accompanied by severe pneumonia, pulmonary alveolar collapses and which stops oxygen exchange. Viral transmissibility and pathogenesis depend on recognition by a receptor in the host, protease cleavage of the host membrane and fusion. SARS-CoV-2 binds to the angiotensin converting enzyme 2 receptor. Here, we discuss the general characteristics of the virus, its mechanism of action and the way in which the mechanism correlates with the comorbidities that increase the death rate. We also discuss the currently proposed therapeutic measures and propose the use of antioxidant drugs to help patients infected with the SARS-CoV-2. Oxidizing agents come from phagocytic leukocytes such as neutrophils, monocytes, macrophages and eosinophils that invade tissue. Free radicals promote cytotoxicity thus injuring cells. They also trigger the mechanism of inflammation by mediating the activation of NFkB and inducing the transcription of cytokine production genes. Release of cytokines enhances the inflammatory response. Oxidative stress is elevated during critical illnesses and contributes to organ failure. In corona virus disease-19 there is an intense inflammatory response known as a cytokine storm that could be mediated by oxidative stress. Although antioxidant therapy has not been tested in corona virus disease-19, the consequences of antioxidant therapy in sepsis, acute respiratory distress syndrome and acute lung injury are known. It improves oxygenation rates, glutathione levels and strengthens the immune response. It reduces mechanical ventilation time, the length of stay in the intensive care unit, multiple organ dysfunctions and the length of stay in the hospital and mortality rates in acute lung injury/acute respiratory distress syndrome and could thus help patients with corona virus disease-19.


Subject(s)
Antioxidants/pharmacology , Betacoronavirus/physiology , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL